
 

 

 

 

 

 
Section D 

 
Genetic Algorithms 



Introduction 

 After scientists became disillusioned with 
classical and neo-classical attempts at 
modeling intelligence, they looked in other 
directions.  

 Two prominent fields arose, connectionism 
(neural networking, parallel processing) and 
evolutionary computing.  

 It is the latter that this essay deals with - 
genetic algorithms and genetic programming. 



What is GA 

 A genetic algorithm (or GA) is a search technique 

used in computing to find true or approximate 

solutions to optimization and search problems.  

 Genetic algorithms are categorized as global search 

heuristics.  

 Genetic algorithms are a particular class of 

evolutionary algorithms that use techniques inspired 

by evolutionary biology such as inheritance, 

mutation, selection, and crossover (also called 

recombination). 



What is GA 

 Genetic algorithms are implemented as a computer 
simulation in which a population of abstract 
representations (called chromosomes or the genotype 
or the genome) of candidate solutions (called 
individuals, creatures, or phenotypes) to an 
optimization problem evolves toward better solutions.  

 

 Traditionally, solutions are represented in binary as 
strings of 0s and 1s, but other encodings are also 
possible.  



What is GA 

 The evolution usually starts from a population of 

randomly generated individuals and happens in 

generations.  

 

 In each generation, the fitness of every individual in 

the population is evaluated, multiple individuals are 

selected from the current population (based on their 

fitness), and modified (recombined and possibly 

mutated) to form a new population. 



What is GA 

 The new population is then used in the next 
iteration of the algorithm.  

 Commonly, the algorithm terminates when 
either a maximum number of generations has 
been produced, or a satisfactory fitness level 
has been reached for the population.  

 If the algorithm has terminated due to a 
maximum number of generations, a 
satisfactory solution may or may not have been 
reached.  



Key terms  

 Individual - Any possible solution  

 Population - Group of all individuals  

 Search Space - All possible solutions to the problem  

 Chromosome - Blueprint for an individual  

 Trait - Possible aspect (features) of an individual 

 Allele - Possible settings of trait (black, blond, etc.) 

 Locus - The position of a gene on the chromosome  

 Genome - Collection of all chromosomes for an 
individual  



Chromosome, Genes and 

Genomes 

 



Genotype and Phenotype 

 Genotype: 

 – Particular set of genes in a genome 

 

 Phenotype: 

 – Physical characteristic of the genotype 

(smart, beautiful, healthy, etc.) 

 



Genotype and Phenotype 

 

 



GA Requirements 

 A typical genetic algorithm requires two things to be defined: 

 a genetic representation of the solution domain, and 

 a fitness function to evaluate the solution domain.  

 

 A standard representation of the solution is as an array of bits. 
Arrays of other types and structures can be used in essentially 
the same way.  

 The main property that makes these genetic representations 
convenient is that their parts are easily aligned due to their 
fixed size, that facilitates simple crossover operation.  

 Variable length representations may also be used, but 
crossover implementation is more complex in this case.  

 Tree-like representations are explored in Genetic 
programming. 



Representation 

Chromosomes could be: 

 Bit strings                                         (0101 ... 1100) 

 Real numbers                     (43.2 -33.1 ... 0.0 89.2)  

 Permutations of element     (E11 E3 E7 ... E1 E15) 

 Lists of rules                       (R1 R2 R3 ... R22 R23) 

 Program elements               (genetic programming) 

 ... any data structure ... 

 



GA Requirements 

 The fitness function is defined over the genetic representation 
and measures the quality of the represented solution.  

 The fitness function is always problem dependent.  

 For instance, in the knapsack problem we want to maximize 
the total value of objects that we can put in a knapsack of some 
fixed capacity.  

 A representation of a solution might be an array of bits, where 
each bit represents a different object, and the value of the bit (0 
or 1) represents whether or not the object is in the knapsack.  

 Not every such representation is valid, as the size of objects 
may exceed the capacity of the knapsack.  

 The fitness of the solution is the sum of values of all objects in 
the knapsack if the representation is valid, or 0 otherwise. In 
some problems, it is hard or even impossible to define the 
fitness expression; in these cases, interactive genetic 
algorithms are used. 

http://en.wikipedia.org/wiki/Knapsack_problem


A fitness function 



Basics of GA 

 The most common type of genetic algorithm works like this:  

 a population is created with a group of individuals created 
randomly.  

 The individuals in the population are then evaluated.  

 The evaluation function is provided by the programmer and 
gives the individuals a score based on how well they perform 
at the given task.  

 Two individuals are then selected based on their fitness, the 
higher the fitness, the higher the chance of being selected.  

 These individuals then "reproduce" to create one or more 
offspring, after which the offspring are mutated randomly.  

 This continues until a suitable solution has been found or a 
certain number of generations have passed, depending on the 
needs of the programmer. 



General Algorithm for GA  

 Initialization 

 Initially many individual solutions are randomly 
generated to form an initial population. The 
population size depends on the nature of the problem, 
but typically contains several hundreds or thousands 
of possible solutions.  

 Traditionally, the population is generated randomly, 
covering the entire range of possible solutions (the 
search space).  

 Occasionally, the solutions may be "seeded" in areas 
where optimal solutions are likely to be found. 



General Algorithm for GA 

 Selection 
 During each successive generation, a proportion of the existing 

population is selected to breed a new generation.  

 Individual solutions are selected through a fitness-based 
process, where fitter solutions (as measured by a fitness 
function) are typically more likely to be selected.  

 Certain selection methods rate the fitness of each solution and 
preferentially select the best solutions. Other methods rate only 
a random sample of the population, as this process may be 
very time-consuming. 

 Most functions are stochastic and designed so that a small 
proportion of less fit solutions are selected. This helps keep the 
diversity of the population large, preventing premature 
convergence on poor solutions. Popular and well-studied 
selection methods include roulette wheel selection and 
tournament selection. 



General Algorithm for GA 

 In roulette wheel selection, individuals are 

given a probability of being selected that is 

directly proportionate to their fitness. 

 

 Two individuals are then chosen randomly 

based on these probabilities and produce 

offspring. 



General Algorithm for GA 

  Roulette Wheel’s Selection Pseudo Code: 
  

 for all members of population 

  sum += fitness of this individual 

 end for  

 for all members of population  

  probability = sum of probabilities + (fitness / sum)  

  sum of probabilities += probability  

 end for  

 loop until new population is full  

  do this twice  

   number = Random between 0 and 1  

   for all members of population 

    if number > probability but less than next probability then 
    you have been selected  

   end for  

  end 

   create offspring  

 end loop  



General Algorithm for GA 

 Reproduction 

 The next step is to generate a second generation population of 
solutions from those selected through genetic operators:  

 crossover (also called recombination), and/or mutation. 

 For each new solution to be produced, a pair of "parent" 
solutions is selected for breeding from the pool selected 
previously.  

 By producing a "child" solution using the above methods of 
crossover and mutation, a new solution is created which 
typically shares many of the characteristics of its "parents". 
New parents are selected for each child, and the process 
continues until a new population of solutions of appropriate 
size is generated. 



General Algorithm for GA 

 These processes ultimately result in the next 
generation population of chromosomes that is 
different from the initial generation.  

 

 Generally the average fitness will have 
increased by this procedure for the population, 
since only the best organisms from the first 
generation are selected for breeding, along 
with a small proportion of less fit solutions, for 
reasons already mentioned above. 

 



Crossover 

 
 the most common type is single point crossover. In single 

point crossover, you choose a locus at which you swap the 
remaining alleles from on parent to the other. This is complex 
and is best understood visually. 

 As you can see, the children take one section of the 
chromosome from each parent.  

 The point at which the chromosome is broken depends on the 
randomly selected crossover point.  

 This particular method is called single point crossover because 
only one crossover point exists. Sometimes only child 1 or 
child 2 is created, but oftentimes both offspring are created and 
put into the new population.  

 Crossover does not always occur, however. Sometimes, based 
on a set probability, no crossover occurs and the parents are 
copied directly to the new population. The probability of 
crossover occurring is usually 60% to 70%. 



Crossover 

 

 



Mutation 

 

 After selection and crossover, you now have a new population 
full of individuals.  

 Some are directly copied, and others are produced by 
crossover.  

 In order to ensure that the individuals are not all exactly the 
same, you allow for a small chance of mutation.  

 You loop through all the alleles of all the individuals, and if 
that allele is selected for mutation, you can either change it by 
a small amount or replace it with a new value. The probability 
of mutation is usually between 1 and 2 tenths of a percent.  

 Mutation is fairly simple. You just change the selected alleles 
based on what you feel is necessary and move on. Mutation is, 
however, vital to ensuring genetic diversity within the 
population. 



Mutation 



General Algorithm for GA 

 Termination 

 This generational process is repeated until a 
termination condition has been reached.  

 Common terminating conditions are: 

 A solution is found that satisfies minimum criteria  

 Fixed number of generations reached  

 Allocated budget (computation time/money) reached  

 The highest ranking solution's fitness is reaching or has 
reached a plateau such that successive iterations no longer 
produce better results  

 Manual inspection  

 Any Combinations of the above 



GA Pseudo-code  

 Choose initial population 

 Evaluate the fitness of each individual in the population  

 Repeat  

 

 Select best-ranking individuals to reproduce 

 

 Breed new generation through crossover and mutation (genetic 
operations) and give birth to offspring 

 

 Evaluate the individual fitnesses of the offspring  

 

 Replace worst ranked part of population with offspring  

 

 Until <terminating condition>  

 



Symbolic AI  VS. Genetic 

Algorithms  
 Most symbolic AI systems are very static.  

 Most of them can usually only solve one given 
specific problem, since their architecture was 
designed for whatever that specific problem was in 
the first place.  

 Thus, if the given problem were somehow to be 
changed, these systems could have a hard time 
adapting to them, since the algorithm that would 
originally arrive to the solution may be either 
incorrect or less efficient.  

 Genetic algorithms (or GA) were created to combat 
these problems; they are basically algorithms based 
on natural biological evolution.  



Symbolic AI  VS. Genetic 

Algorithms 
 The architecture of systems that implement genetic algorithms 

(or GA) are more able to adapt to a wide range of problems.  

 A GA functions by generating a large set of possible solutions 
to a given problem.  

 It then evaluates each of those solutions, and decides on a 
"fitness level" (you may recall the phrase: "survival of the 
fittest") for each solution set.  

 These solutions then breed new solutions.  

 The parent solutions that were more "fit" are more likely to 
reproduce, while those that were less "fit" are more unlikely to 
do so.  

 In essence, solutions are evolved over time. This way you 
evolve your search space scope to a point where you can find 
the solution.  

 Genetic algorithms can be incredibly efficient if programmed 
correctly.  

 



Genetic Programming 

 
 In programming languages such as LISP, the mathematical 

notation is not written in standard notation, but in prefix 
notation. Some examples of this:  

 + 2 1   :  2 + 1  

 * + 2 1 2    :  2 * (2+1)  

 * + - 2 1 4 9  :  9 * ((2 - 1) + 4)  

 Notice the difference between the left-hand side to the right? 
Apart from the order being different, no parenthesis! The 
prefix method makes it a lot easier for programmers and 
compilers alike, because order precedence is not an issue.  

 You can build expression trees out of these strings that then 
can be easily evaluated, for example, here are the trees for the 
above three expressions.  



Genetic Programming 



Genetic Programming 

 You can see how expression evaluation is thus a lot 
easier. 

 What this have to do with GAs? If for example you 
have numerical data and 'answers', but no expression 
to conjoin the data with the answers.  

 A genetic algorithm can be used to 'evolve' an 
expression tree to create a very close fit to the data. 

  By 'splicing' and 'grafting' the trees and evaluating 
the resulting expression with the data and testing it to 
the answers, the fitness function can return how close 
the expression is.  



Genetic Programming 

 The limitations of genetic programming lie in 
the huge search space the GAs have to search 
for - an infinite number of equations.  

 Therefore, normally before running a GA to 
search for an equation, the user tells the 
program which operators and numerical ranges 
to search under.  

 Uses of genetic programming can lie in stock 
market prediction, advanced mathematics and 
military applications . 



Evolving Neural Networks  

 Evolving the architecture of neural network is 

slightly more complicated, and there have been 

several ways of doing it. For small nets, a 

simple matrix represents which neuron 

connects which, and then this matrix is, in 

turn, converted into the necessary 'genes', and 

various combinations of these are evolved. 



Evolving Neural Networks  

 Many would think that a learning function could be 
evolved via genetic programming. Unfortunately, 
genetic programming combined with neural networks 
could be incredibly slow, thus impractical.  

 As with many problems, you have to constrain what 
you are attempting to create.  

 For example, in 1990, David Chalmers attempted to 
evolve a function as good as the delta rule.  

 He did this by creating a general equation based upon 
the delta rule with 8 unknowns, which the genetic 
algorithm then evolved. 



Other Areas 

 

 Genetic Algorithms can be applied to virtually any problem 
that has a large search space.  

 

 Al Biles uses genetic algorithms to filter out 'good' and 'bad' 
riffs for jazz improvisation.  

 

 The military uses GAs to evolve equations to differentiate 
between different radar returns. 

 

 Stock companies use GA-powered programs to predict the 
stock market.  



Example 

 f(x) = {MAX(x2): 0 <= x <= 32 } 

 Encode Solution:  Just use 5 bits (1 or 0). 

 Generate initial population. 

 

 

 

 Evaluate each solution against objective. 

 

 

Sol. String Fitness % of Total 

A 01101 169 14.4 

B 11000 576 49.2 

C 01000 64 5.5 

D 10011 361 30.9 

A 0 1 1 0 1 

B 1 1 0 0 0 

C 0 1 0 0 0 

D 1 0 0 1 1 



Example Cont’d 

 Create next generation of solutions 

 Probability of “being a parent” depends on the fitness. 

 Ways for parents to create next generation 

 Reproduction 

 Use a string again unmodified. 

 Crossover 

 Cut and paste portions of one string to another. 

 Mutation 

 Randomly flip a bit. 

 COMBINATION of all of the above. 

 



Checkboard example 

 We are given an n by n checkboard in which every field 

can have a different colour from a set of four colors. 

  Goal is to achieve a checkboard in a way that there are no 

neighbours with the same color (not diagonal) 
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Checkboard example Cont’d 

 Chromosomes represent the way the checkboard is colored. 

  Chromosomes are not represented by bitstrings but by 

bitmatrices 

  The bits in the bitmatrix can have one of the four values 0, 

1, 2 or 3, depending on the color. 

  Crossing-over involves matrix manipulation instead of 

point wise operating.  

 Crossing-over can be combining the parential matrices in a 

horizontal, vertical, triangular or square way. 

  Mutation remains bitwise changing bits in either one of the 

other numbers. 

 



Checkboard example Cont’d 

• This problem can be seen as a graph with n nodes 

 and (n-1) edges, so the fitness f(x) is defined as:  

 

     f(x) = 2 · (n-1) ·n 

 



Checkboard example Cont’d 

• Fitnesscurves for different cross-over rules: 

 

0 100 200 300 400 500
130

140

150

160

170

180

F
it
n
e
s
s

Lower-Triangular Crossing Over

0 200 400 600 800
130

140

150

160

170

180
Square Crossing Over

0 200 400 600 800
130

140

150

160

170

180

Generations

F
it
n
e
s
s

Horizontal Cutting Crossing Over

0 500 1000 1500
130

140

150

160

170

180

Generations

Verical Cutting Crossing Over



Questions 

 

 

?? 



THANK YOU 


